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A Method for Finding Permanents of 0, 1 Matrices 

By Ralph Kallman 

Absact. Certain row operations are used in a method for computing permanents of 0, 1 
matrices. Machine execution times for this method are compared with those for the Ryser 
and Nijenhuis-Wilf algorithms. 

1. Terminology. Since the rows of a 0, 1 matrix may be regarded as the 
characteristic functions of sets, e.g., (1101) for {xI, X2, X4}, we shall use the 
standard names and symbols for set operations and relations for the corresponding 
ones on the rows. Thus, the intersection of two rows (1101), (1110) is (1100) 
since {xl, X2, X4} n {X1, X2, X3} = {X1, X2}. Similarly (1101) U (1110) = (1111), 
(1101) \ (1110) = (0001), (1100) c (1110), etc. A universal row is defined to be one 
equal to the union of all rows. The number of l's in row R is denoted #R; if 
# R = 1, then R is called a singleton row; if # R = 0, then R is a null or zero row. 
All matrices are 0, 1. A permutation of matrix M is a selection of a single 1 from 
each row with no column duplications. Thus, per M is the count of such permuta- 
tions. 

2. The Method. We use the following splitting and row removal lemmas. 

LEMMA 1. Let M(S, T) denote a matrix where all rows remain fixed except the jth 
and kth rows which are S, T, respectively. Then 

per M(S, T) = per M(S U T, S n T) + per M(S \ T, T \ S). 

Proof. Since T is the disjoint union of T n S with T \ S, per M(S, T) = 

per M(S, T n S) + per M(S, T \ S). Likewise 

per M(S, T\ S) = per M(S n T, T\ S) + per M(S\ T, T\ S). 

Then after a row interchange, 

per M(S, T) 

= (per M(S, T n S) + per M(T\ S, T n S)) +per M(S \ T, T \ S) 

=perM(SuT,SnT)+perM(S\T,T\S). EO 

Here is an illustration of Lemma 1 which involves the last two rows. 

II 0 1 1 1 0 1 1 1 0 1 1 
per j I 0 1 =per [ I I + per g O O 1J. 

I I I 0 1 I 1 0 0 O 0 1 0 

Henceforth, M(R,. .. l Rm) denotes an m x n matrix with rows Ri. 
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LEMmA 2. Suppose M(R,,. . , Rm) has Rm n R, =0 or Rm C R, for all i and S 
is a singleton row, S C Rm. Then 

per M(R,, . . ., Rm) = #Rm * per M(R, \S, . . ., Rm- I \ S). 

Proof. If Rm is a singleton, the result is clear. If not, let SI, S2, . . . , S, be disjoint 
singleton subsets of Rm where t = # R,. Then 

per M(RI, . . . l Rm _ Sj) = per M(R l Sj, . . . , m_ Sj). 

By our hypotheses, each of M(RI \ Si, . .. , Rm \ Sj) can be obtained from any 
other by a column interchange; thus they all have the same permanent. Since Rm is 
the disjoint union of the SJ per M(R,... Rm) = XJ>=I per M(R1, . .. , Rmri S) 
and the desired result follows. EO 

Of course, if any row is null, then per M = 0. 

LEMMA 3. If Rm is a universal row of M(R,, ... , Rm), then per M(R,, ... , Rm) = 

(#Rm - m + 1) * per M(R,, * * * , Rm l) 

Proof. Select a permutation from M(R1,... , Rm-1) first. Then #R -m + 1 
choices remain for Rm. E1 

Of course, the universal need not be the last row since row interchanges may be 
made. 

Description of Method. Our method is to expand per M = a, per Ml + a2 per M2 
+ . . . so that rows may be removed from summand matrices; when four or fewer 
rows remain for a term, a direct evaluation is made. 

Let p(t) denote the condition Ri n Rm = 0 or Rm C Ri, i > t, for 
M(RP, ... , Rm). Note that p(l) is the hypothesis for Lemma 2 and p(m) is always 
true. We create terms satisfying p(l) by an iterative procedure. If Rm = 0, a zero 
evaluation is made immediately, and if # Rm = 1, then p(l) holds. 

Suppose t > 1 and p(t) holds. We do the first permissible operation in the 
following list to create p(t - 1). 

1. If Rm C R,_- or Rm n R,_ =0, then p(t -1) already holds; if R,_ is a 
universal, it is removed by Lemma 3. 

2. If R,_ C Rm, then interchanging the rows creates condition p(t - 1); how- 
ever, if # R,_ = 1, it is removed by Lemma 1. 

3. If R,I \ Rm $# 0 and Rm \ RI_ - I #0, then Lemma 1 is applied. Both terms 
thus created satisfy p(t - 1). One term is stored and operations continue on the 
second. 

The preceding procedure is repeated until p(l) is established for a term; then 
Lemma 2 is used to remove a row. When a term has four or fewer rows, the 
permanent is evaluated using the formulas: 

(1) per M(R,) = #RI, 
(2) per M(R,, R2) = #R1#R2 - #(R, n R2), 

per M(R,, R2, R3) = #RX4# R2# R3 - # RI # (R2 n R3) - # R2#(RI n R3) 

-#R3#(R, n R2) + 2#(R, n R2 n R3). 
The formula for the 4 x n case is too lengthy to list here; see [1, p. 8]. 
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Proof of (3). Now, #*R3 * per M(R1, R2) counts the permutations of 
M(R,, R2, R3) plus additional ways of selecting a 1 from each row such that the 1 
from R3 is column duplicated exactly once from R, or R2. Subtracting the number 
of these latter ways gives 

per M(R1, R2, R3) = *R3. per M(R1, R2) - per M(R, n R3, R2) 

-per M(R1, R2 n R3); 

this expression may be further broken down using (1) and (2) and reassembled into 
formula (3). C] 

Although these formulas involve subtractions, the numbers are too small to 
cause cancellation of digits from subtractions (on the DEC-10 machine). As terms 
are evaluated they are added to a cumulative sum which eventually becomes the 
answer. 

3. Test Examples. In the following examples, K denotes the method of Section 2 
above, R denotes H. J. Ryser's inclusion-exclusion formula [3, p. 26], and NW 
denotes the Nijenhuis-Wilf adaptation of Method R [2, p. 224]. Method NW is 
available for square matrices only. Neither R nor NW are restricted to 0, 1 
matrices. We compare the methods by giving machine execution times which, of 
course, depend on the speed of the object machine and the computer programs 
which implement the algorithms. 

Example 1. Derangements. The matrices are n X n with zeros on the main 
diagonal and ones elsewhere. Table I gives machine execution times. 

TABLE I 

Time, seconds 

n K R NW 

5 .002 .004 .004 
10 .017 .18 .15 
15 .20 8.1 6.54 
20 2.37 341.a 271 .a 

a. Answer incorrect because of cancellation of digits in subtractions. 

Exapkle 2. Random Matrices. The pseudo-random number generator was used 
to create m X 15 matrices. Table II and Table III give machine execution times for 
probability p = .75 and p = .25, respectively, of a 1 in a given position. Two 
examples of each size were created. 
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TABLE II 

Example 2, p = .75 

Time, seconds 
m K R Value 

5 .003 .48 74983 
5 .004 .48 59052 

10 .56 5.3 830203830 
10 2.9 5.3 338176115 
15 477. 8.1 3622020199 
15 316. 8.1 7260574617 

TABLE III 

Example 2, p = .25 

Time, seconds 
m K R Value 

5 .001 .48 338 
5 .002 .48 34 

10 .037 5.3 2513 
10 .35 5.3 32628 
15 .032 8.1 74 
15 .001 8.1 0 

4. The Computer Programs. The programs are coded in Fortran; the compiler 
used was FORTRAN 10 (OPT). Execution was on a DEC10. Method K is machine- 
dependent since it involves a machine language subroutine for counting bits. 
Copies of programs for K and R are available in mimeographed form [1] and NW 
is found in [2, p. 224]. 

5. Summary. Execution times for method K depend on the one's density and the 
structure of the matrix while times for R and NW are constant for matrices of fixed 
dimensions. Cancellation of digits due to subtractions cannot occur in method K. 
A useful application of K would be if it were required to determine whether or not 
a 0, I matrix has permanent 0; the program could be easily modified to include an 
exit when the first nonzero term is encountered. This paper incorporates the several 
valuable suggestions of the referee. 
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